Муниципальное бюджетное образовательное учреждение городского округа Тольятти

МБУ «Лицей № 60»

УТВЕРЖЕНО		
Директо	р МБУ	"Лицей № 60'
		Косова Т.Ю
Приказ №	ОТ	Γ

ПРОГРАММА КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

«Математический театр» 1-3 классы

Составитель: Дубовик М.Ю., руководитель МО, учитель начальных классов

Пояснительная записка

Программа курса внеурочной деятельности «Математический театр» для 1–3 классов общеобразовательных организаций разработана на основе ФГОС начального общего образования, Концепции духовнонравственного развития и воспитания личности гражданина России, Рабочей концепции одаренности, дидактической системы «Учусь учиться» (Л. Г. Петерсон).

Программа разработана в НОУ ДПО «Институт системнодеятельностной педагогики» (Институт СДП) — Федеральной инновационной площадке Министерства просвещения РФ по теме «Механизмы сохранения лидирующих позиций Российской Федерации в области качества математического образования (ИМС «Учусь учиться»)» (2021–2023 гг.). Реализует «Концепцию выращивания способностей и одаренности» Института СДП применительно к выращиванию математических способностей и одаренности.

Программа направлена на выращивание математических способностей и одаренности детей, их общеинтеллектуальное и личностное развитие, повышение качества подготовки к математическим олимпиадам и качества математического образования в целом.

Общая характеристика курса

Математические олимпиады в настоящее время принято считать элитным направлением: в них вовлечено ограниченное число школьников, чаще всего из математических классов или профильных образовательных организаций. При этом мощный ресурс олимпиадной математики как эффективного инструмента интеллектуального и личностного развития детей в массовой школе используется недостаточно.

Олимпиадные задачи — это, как правило, нестандартные задачи, поэтому для решения недостаточно просто ИХ приобретенные на уроках знания и умения. Решение любой олимпиадной задачи — это всегда пусть маленькое, но открытие, демонстрирующее красоту математической мысли и позволяющее пережить радость творчества и удовольствие от интеллектуальной деятельности. Решение олимпиадных задач развивает у каждого гибкость мышления, глубину И воображение. самостоятельность и трудолюбие, творческие способности, повышает интерес к математике и уровень математической подготовки. Поэтому вовлечение в олимпиадную математику важно для всех учеников: математически одаренные дети в творческой среде смогут полнее реализовать свой потенциал и вырастить свой математический талант, сохраняя физическое и психическое здоровье, а все остальные — развить свои математические способности и успешнее учиться, что пригодится в любом деле.

Между тем можно выделить целый ряд проблем, создающих препятствия для привлечения в олимпиадную среду учащихся массовой школы: недостаточная мотивация школьников к участию в олимпиадном движении, «оторванность» олимпиадной математики от основного школьного курса, недостаточная системность олимпиадной подготовки, отсутствие преемственности между разными уровнями образования.

Целью курса «Математический театр» является системная подготовка учащихся 1–3 классов к математическим олимпиадам, ориентированная на вовлечение школьников в математическую деятельность, развитие мотивации, мышления, творческих способностей и за счет этого — достижение более высокого уровня их олимпиадной и общей математической подготовки.

Концептуальная идея данного курса состоит в том, чтобы на основе системно-деятельностного подхода разработать педагогический инструментарий (учебное содержание, технологии, методики, методическое обеспечение) непрерывной олимпиадной подготовки по математике в 1-3 классах, организовать обучение и методическое сопровождение учителей, стремящихся повысить мотивацию и качество математической подготовки своих учеников.

Методологической основой реализации поставленной цели являются следующие принципы:

- 1) Принцип развития, который состоит в том, что олимпиадная подготовка должна быть нацелена прежде всего на создание условий для всестороннего развития мышления и личностных качеств каждого ученика, а не ограничиваться тренингом в освоении ими методов олимпиадной математики. Суть этого принципа можно кратко выразить тезисом: «развитие средствами олимпиадной математики каждого ученика».
- 2) **Принцип «выращивания»** состоит в совмещении, с одной стороны, внутренней активности ученика, его целенаправленных попыток раскрыть и реализовать свой потенциал, а с другой стороны, внешней организации этой активности со стороны учителя в рамках той же цели.
- 3) **Принцип успешности** состоит в акцентировке на успешность, то есть в создании такой среды, где к ошибке относятся как к ступеньке роста, а не поводу для огорчения и порицания, где ценится и поддерживается успех каждого ученика относительно себя, независимо от начального уровня его подготовки и математических способностей.

Основнымиособенностями курса «Математический театр» являются:

- 1) системность и непрерывность олимпиадной подготовки учащихся с 1 по 3 класс (на уровне технологий, содержания и методик), ее достаточная полнота;
- 2) мотивация и вовлечение учащихся в самостоятельную математическую деятельность на основе системно-деятельностного подхода;
- 3) выращивание общеучебных интеллектуальных умений, необходимых для решения олимпиадных задач: умения эффективно преодолевать трудности, владения общими подходами к решению нестандартных задач, умения работать в команде и др.;
- 4) создание творческой, эмоционально окрашенной образовательной среды, где каждый ученик имеет возможность добиться успеха;
- 5) создание единого пространства урока и внеурочной деятельности (синхронизация с непрерывным курсом математики «Учусь учиться» для 1–3 классов и системой математических олимпиад ВсОШ);
- 6) широкое методическое обеспечение (программа, учебные пособия для детей, подробные решения заданий, методические рекомендации по организации занятий в технологии «Математический театр», сценарии занятий с подробными решениями, презентациями, раздаточными и демонстрационными материалами);
- 7) методическая поддержка учителей в рамках ИМС «Учусь учиться» (консультации, курсы, сетевые события с демонстрацией открытых занятий, творческие лаборатории и др.).

Каждая из перечисленных особенностей положительным образом влияет на качество олимпиадной подготовки и технологически обеспечивается педагогическими инструментами системы «Учусь учиться» (метод рефлексивной самоорганизации, технология деятельностного метода (ТДМ), система дидактических принципов, метод ролей, технология «Математический театр»).

Системность и непрерывность, организация самостоятельной математической деятельности учащихся, их эмоциональная поддержка индивидуальный продвижения, развитие темп мотивашии. познавательных творческого потенциала, процессов И пространство реализации системно-деятельностного подхода на уроках и во внеурочной деятельности открывают для каждого ребенка возможность не только осваивать содержание олимпиадной подготовки уровне своего максимума, но и развивать свои

интеллектуальные способности к решению нестандартных задач, что жизненно важно для всех детей.

Содержание курса «Математический театр» соотнесено с содержанием непрерывного курса математики «Учусь учиться» для начальной школы (1-3) классы) (авторы Л. Г. Петерсон, Н. Х. Агаханов, Г. В. Дорофеев и др.).

Место курса в учебном плане

Курс «Математический театр» является курсом внеурочной деятельности. Программа состоит из 2 этапов.

Программа I этапа (подготовительного) предназначена для учащихся 1-2 классов и рассчитана на 64 ч (1 класс — 30 ч, 2 класс — 34 ч).

Программа II этапа (ознакомительного) предназначена для учащихся 3 классов и рассчитана на 34 ч (по 1 ч в неделю).

<u>Структура и содержание программы курса</u> <u>внеурочной деятельности</u>

Содержание курса «Математический театр» структурировано в 21 тематическую линию. Эти линии непрерывно развиваются с 1 по 3 класс, достаточно полно представляют традиции олимпиадной подготовки и углубляют знания школьной программы по математике. Выбор содержания осуществляется с опорой на золотой фонд олимпиадной литературы, проверенные временем методы и приемы решения олимпиадных задач.

Содержание курса на каждом этапе обучения учитывает возрастные особенности развития детей.

I этап — *мотивационный* (подготовительный) (1–2 классы)

Основной задачей данного этапа является формирование мотивации к решению нестандартных математических задач на основе механизма «надо» — «хочу» — «могу».

На данном этапе реализуется проект «Задача дня». Детям систематически предлагаются нестандартные математические задачи в зоне их ближайшего развития («надо») и создается ситуация успеха, которая всегда вызывает радостные чувства и эмоции («хочу»). В результате удовлетворяются базисные потребности детей в безопасности, общении и поддержке, накапливается опыт решения

нестандартных задач, готовится мышление и снимается страх перед новым и незнакомым («могу»). Здесь же происходит первое знакомство детей с коммуникативными ролями «автора» и «понимающего», а также ролями мыслителя, решающего математическую задачу (с. 30). Все эти роли построены на основе метода рефлексивной самоорганизации (РСО).

II этап — *ознакомительный* (3 классы-4 классы)

Основной задачей данного этапа является знакомство учащихся с базовыми подходами, методами и приемами решения олимпиадных задач в соответствии с содержанием курса «Олимпиадная математика», а также формирование первичного опыта применения этих методов.

На данном этапе реализуется технология «Математический театр», которая позволяет создать в классе творческую среду, где выращиваются навыки общения и коммуникации, уважение и признание достижений каждого учащегося, устойчивая познавательная мотивация, вера в себя. Роли мыслителя, которые дети постепенно осваивают на данном этапе, дают возможность овнешнить внутренние мыслительные действия по решению нестандартных интеллектуальных задач, сделать их доступными для детей с разными типами мышления и за счет этого вовлечь более широкий круг учащихся в олимпиадное пвижение.

Использование технологии «Математический театр» помогает поддерживать в классе творческую среду, окрашенную позитивными эмоциями. При этом роли «мыслителя», овнешняющие умственные действия при решении нестандартных задач, постепенно переходят во внутренний план, их исполнение автоматизируется и становится прочной базой не только самостоятельного применения новых подходов к решению нестандартных математических задач, но и самостоятельного поиска (например, появляются задачи на дополнительные построения в геометрии, где недостаточно «знать», а нужно «увидеть» новый, неожиданный способ решения).

Соответственно, коллективные и групповые формы достижения успеха в решении олимпиадных задач все чаще дополняются индивидуальными. Все это отвечает потребностям детей в познании, открытии, созидании, порождает важное для их познавательной мотивации интеллектуальное удовольствие и уважение к достижениям (своим и других).

В результате прохождения учащимися данных этапов открывается возможность не только повысить качество олимпиадной и общей математической подготовки учащихся, но и создать в классе среду уважения к успеху и стремления к успеху, развить их познавательную мотивацию, поддержать психологическое здоровье детей и их личностный рост к наивысшим уровням развития.

Организация образовательного процесса

Образовательный процесс в курсе «Математический театр» строится на основе дидактической системно- деятельностного метода «Учусь учиться» (Л. Γ . Петерсон), реализующей системнодеятельностный подход, где в качестве теоретической базы выбрана общая теория деятельности ММК и ММПК (Γ . П. Щедровицкий, О. С. Анисимов).

Подготовительный этап («Задача дня»). 1–2 классы

Цель этапа: подготовить мышление детей и на основе механизма «надо» — «хочу» — «могу» сформировать мотивацию к решению нестандартных математических задач.

задачи этапа:

- 1) вовлечь учащихся в систематическое решение нестандартных математических задач в зоне их ближайшего развития («надо»);
- 2) создать творческую, доброжелательную, безопасную (с позиций права на ошибку) образовательную среду, ориентированную на поддержку успеха каждого ученика относительно себя («хочу»);
- 3) подготовить к правильному восприятию нестандартных задач: снять неуверенность и страх («могу»), создать возможность для каждого ученика пережить ситуацию успеха и получить удовольствие от решения сложных задач («хочу», «могу»);
- 4) тренировать мыслительные операции, навыки парной и групповой работы;
- 5) сформировать, по возможности, опыт коммуникативного взаимодействия в позициях «автора» и «понимающего», начальные представления о «ролях мыслителей» при решении задач (ролях фотографа, разведчика, переводчика, навигатора, мастера, эксперта) (с. 30).

Содержание подготовительного этапа («Задача дня»)

Содержание проекта «Задача дня» структурировано в 21 тематическую линию, которые преемственно развиваются с 1 по 9 класс. Данное содержание согласовано с непрерывным курсом математики «Учусь учиться» для 1–2 классов общеобразовательной школы.

I. Арифметика

1. Суммы

Числовой луч как инструмент при решении арифметических задач. Обратные действия. Приемы восстановления пропущенных чисел и знаков действий (+, -) в примерах.

Приемы упрощения устного счета (сложение, вычитание): с помощью арифметических законов, дополнения до круглого числа. Свойство изменения последней цифры числа при сложении, вычитании.

2. Числа и их свойства

Равенства со спичками (сложение, вычитание).

Приемы решения задач на правильную расстановку скобок и знаков, восстановление знаков действий. Перебор вариантов в задачах на расстановку знаков и скобок.

3. Закономерности

Числовые закономерности на сложение, вычитание, умножение, деление. Выявление и построение простейших закономерностей. Восстановление пропущенных элементов последовательностей.

4. Время и движение

Величины и их измерение. Единицы измерения длины, массы, объема (вместимости), времени, площади. Схемы в задачах о величинах.

Преобразование единиц измерения величин.

II. Геометрия

1. Геометрическое мышление

Геометрические фигуры и их свойства. Плоские и пространственные фигуры.

Составление плоских фигур из частей. Разрезания плоских фигур на две и более части. Танграм.

Математика и красота в окружающем мире. Узоры и перенос фигур. Красота и симметрия.

2. Плошали

Предварительный подсчет количества клеток в частях, на которые нужно разрезать фигуру. Разрезания на части с ограничениями.

3. Геометрические неравенства

Составление фигур из палочек. Вычисление длин ломаных на клетчатой сетке. Сравнение длин пути по прямой и по ломаной линии.

III. Алгебра

1. От чисел к буквам

Составление числовых и буквенных выражений по рисункам. Буквенные равенства и неравенства. Буквенная запись свойств чисел и

фигур. Простые уравнения и их образная интерпретация с помощью весов и геометрических фигур.

Идея единичного отрезка (части). Чертежи (схемы) с относительными размерами отрезков.

Простые уравнения на умножение и деление и их образная интерпретация с помощью прямоугольника.

2. Функциональные зависимости

Свойства предметов (цвет, форма, размер). Таблицы. Наблюдение зависимостей между величинами, компонентами арифметических действий. Задание зависимостей между величинами с помощью буквенных равенств (формул) и таблиц.

Числовой отрезок и числовой луч.

3. Неравенства и оценки

Сравнение групп предметов. Сравнение чисел и выражений. Отношения и знаки «равно», «не равно», «больше», «меньше». Разностное и кратное сравнение. Логические задачи на части и целое.

IV. Теория чисел

1. Делимость

Отношения «делится», «не делится». Делители и кратное. Четные и нечетные числа. Свойство чередования четных и нечетных чисел на числовом луче.

2. Остатки

Деление с остатком. Поиск закономерностей на числовом луче. Свойство последней цифры при сложении, вычитании. Закономерности в таблице умножения.

V. Логика

1. Математическая логика

Верно и неверно.

Логические задачи-шутки (задачи на устранение мнимых логических противоречий, внимательность). Табличная запись шагов рассуждения в логических задачах. Метод исключения. Анализ высказываний с отрицанием.

2. Принципы решения задач

Рассуждение. Алгоритм решения задачи.

Расположение объектов в порядке возрастания (убывания). Опыт перебора вариантов.

3. Алгоритмы и конструкции

Представление об алгоритме. Порядок действий. Составление алгоритмов решения в арифметических и простых логических задачах.

4. Игры и стратегии

Игры-соревнования как инструмент формирования представлений о стратегии.

VI. Комбинаторика и теория множеств

1. Комбинаторика

Перестановки. Перебор всех вариантов перестановки двух и трех объектов. Перестановки с ограничениями. Подсчет количества вариантов перестановки. Связь между количеством перестановок двух и трех объектов.

Дерево возможностей как способ систематического перебора вариантов.

2. Теория множеств

Разбиение предметов на части по свойствам («мешки»). Элементы группы. Задание группы предметов с помощью перечисления элементов. Выделение части группы. Сложение и вычитание групп предметов. Изображение групп с помощью овалов.

Сравнение групп предметов по количеству.

VII. Комбинаторная геометрия

- 1. Раскраски и разбиения
- 2. Теория графов
- 3. Комбинаторная геометрия

Раскраска и составление фигур по заданным условиям.

Изображение знакомств в группе людей в виде графа.

Представление о равных фигурах. Задачи на поиск равных фигур на клетчатой бумаге.

Ломаная линия, многоугольник. Связь между количеством сторон и вершин многоугольника. Составление фигур из палочек, перекладывание палочек.

Организация образовательного процесса

Учащимся систематически предлагается решить «Задачу дня» — нестандартную задачу по математике. Это может быть задача со звездочкой из учебников и пособий по математике для 1–2 класса курса «Учусь учиться» (Л. Г. Петерсон), а также задача, выбранная из различных источников — сборников задач для кружковой работы, заданий математических олимпиад разного уровня, пособий для внеклассной работы и т. д. Задача подбирается с учетом уровня математической подготовки учащихся с опорой на структуру содержания курса «Математический театр».

Требования к «Задаче дня» следующие:

- задача должна содержать новизну какой-то новый для детей элемент, который ранее не входил в систему обязательного тренинга на уроках математики;
- задача должна быть в зоне ближайшего развития большинства детей класса (дети *должны быть способны решить ее сами* либо при определенном самостоятельном волевом усилии, либо с помощью подводящего диалога взрослого);
- задача должна быть красивой, не громоздкой;
- задача должна нравиться учителю (дети это тонко чувствуют) и быть интересной для детей.

В ходе решения «задачи дня» учитель, в зависимости от ситуации в классе и уровня подготовки детей, вводит в речевую практику роли «мыслителей» и коммуникативные роли «автора» и «понимающего».

Варианты организации

Для вовлечения учащихся в деятельность по решению «задачи дня» особенно важен методологический принцип успешности и дидактические принципы деятельности, психологической комфортности, минимакса, вариативности, творчества. Для их конкретизации можно использовать аналогию интереса детей к компьютерным играм. Почему дети с интересом играют в компьютерные игры, порой сложнейшие, а трудности решения математических задач их вдохновляют далеко не всегда?

На наш взгляд, это связано с тем, что, во-первых, в компьютерные игры дети играют по собственному желанию, их никто не заставляет. Во-вторых, никто не ругает их за то, что они не перешли на новый, более высокий уровень игры — они добиваются этого в своем индивидуальном темпе: кто-то быстрее, а кто-то медленнее. В-третьих, для того чтобы получить результат, им нужно самим придумать свой собственный способ действий, прием, чего-то добиться, что-то преодолеть, и это рождает у каждого позитивные эмоции, чувство самостоятельно одержанной победы. Четвертым существенным фактором является «похвала», поощрение за каждый успешный шаг, этап, при этом даже не важно, в чем оно выражается — в баллах, знаках, словах. Значимым для детей является также уважительное отношение сверстников и друзей к «игровым» успехам друг друга. Все это вместе приводит к тому, что дети с удовольствием играют в компьютерные игры.

Для формирования у учащихся интереса к решению «задачи дня» можно использовать аналогичные **правила**:

- 1) *Не заставлять, а вдохновлять* решение задачи повышенной трудности ребенок выполняет только по своему желанию и выбору.
- 2) Исключить порицание за ошибку уважительное отношение и поддержка любой версии ученика, фиксация в ней

успехов, а не неудач (например, ученик отметил важное обстоятельство, заметил закономерность, впервые предложил собственную версию и пр.).

- 3) «Задача дня» должна быть интересной и посильной (в зоне ближайшего развития) для большинства детей это позволит создать площадку для самостоятельных проб учащимися своих сил и создания ситуации успеха.
- 4) Создать систему фиксации успехов и награждений детей (уровней/статусов) подобно тем, которые используют в компьютерных играх.
- 5) Сделать успехи в решении «задач дня» значимыми событиями класса и семьи каждого ученика удовлетворение потребностей в «признании» является необходимой ступенью личностного роста каждого ребенка и важным мотивирующим фактором.

Данные и другие правила, которые может ввести учитель, основываясь на перечисленных выше принципах, должны запустить механизм выращивания у школьников интереса к решению нестандартных задач по математике. На первых порах у детей нередко возникает лишь внешний, «спортивный» интерес, но он может помочь каждому ребенку развить свое мышление, испытать радость озарения (я смог, я добился, у меня получилось!), обрести веру в себя, привить вкус к решению математических задач ради получения удовольствия уже от самого процесса решения, наработать инструментарий, который станет основой возникновения «внутренней» мотивации.

В этом процессе перехода от внешней мотивации к внутренней принципиально важна доброжелательность, создание творческой среды, умение замечать успехи каждого ученика, их моральная поддержка в случае удачи и особенно неудачи, социализация — признание значимости достигнутых результатов в решении олимпиадных задач другими учениками класса, учителями, родителями. Поэтому система поощрений должна быть видимой для окружающих — систематически отражаться на стенде или сайте класса, в сообщениях родителям (например, в чатах сети Интернет) и т. д.

Форма проведения занятий при работе с «Задачами дня» может быть самой разной, она зависит от условий работы и количества детей в классе. Первые «задачи дня» можно предлагать учащимся и разбирать на уроках математики. Когда способ работы и фиксации результатов дети освоят, можно выставлять новые «задачи дня» в специально отведенном месте — это может быть часть школьной доски, рубрика в классном уголке или стенд «Задача дня». Будет интереснее, если название дети придумают сами, например «Я — математик», «Душевная математика», «Моя математика».

Учащиеся могут решать «задачу дня» на переменах, до или после уроков, в школе или дома, самостоятельно или вместе с друзьями и даже вместе с родителями. Совместный поиск решения задач (ВМЕСТЕ, а НЕ ВМЕСТО) обогащает опыт детей, демонстрирует заинтересованность взрослых в интеллектуальной деятельности, позволяет почувствовать значимость усилий ребенка для получения общего результата, разделить с близкими людьми радость одержанной победы над трудной задачей.

Разбор решения задачи можно организовать на следующий день до начала уроков или на уроке. Учителю важно понимать, посильной ли оказалась задача, сколько детей смогли ее решить, поэтому каждому участнику (участие — по желанию) рекомендуется фиксировать свое решение на листке или в тетради, а в ходе разбора — выполнять самопроверку и самооценку («+» или «?»), при этом важно не оставить без внимания разные варианты решения, которые могут предлагать ученики. В результате выводится новый способ действий или совет по решению задач, который вместе с правильными решениями вывешивается на стенде, а затем используется учениками для решения новых задач.

Оценивание результатов происходит в логике достижений, при этом поощряются достижения не только математические, но и личностные, например, проявление интереса к задаче повышенной сложности, самостоятельно выдвинутая версия, интересная идея, попытка обосновать свое высказывание и т. д. Обсуждаются вопросы: «Что получилось?», «Что вызвало затруднение?», «Чему научился, решая (разбирая) задачу?», «Что пожелаю себе?», «За что могу похвалить себя, других?». При просмотре работ детей учитель делает пометки зеленой ручкой, отмечая их достижения (например, обводит кружком правильно выполненную самооценку «+» или «?»). Если зеленым кружком обведен знак «+», то ученик отмечает свой результат в индивидуальном листе достижений.

Учитель организует в классе ситуацию моральной поддержки учеников, которые сделали свой шаг вперед.

Заметим, что проект «Задача дня» можно реализовывать и в более старших классах с коррекцией на возрастные особенности учащихся — как с мотивационной целью, так и в случае, когда системное решение нестандартных задач (зарядка для ума) вошло у них в привычку и приобрело характер потребности.

Ознакомительный этап («Математический театр»). 3 – 4 класс

Цель этапа: создать для каждого учащегося 3–9 классов общеобразовательной школы возможность качественной олимпиадной

подготовки по математике посредством вовлечения в самостоятельную математическую деятельность, развития мышления, мотивации, освоения методов и формирования системного опыта решения олимпиалных математических залач.

Задачи этапа

- 1) создать творческую, доброжелательную, безопасную (с позиций права на ошибку) образовательную среду, ориентированную на поддержку успеха каждого ученика относительно себя:
- 2) вовлечь учащихся на основе системно-деятельностного подхода (система «Учусь учиться») в математическую деятельность, создать возможность самостоятельного открытия ключевых методов и приемов решения математических олимпиадных задач, тренировать умение их применять;
- 3) снять у детей неуверенность и страх при решении нестандартных задач, создать возможность для каждого ученика системно переживать ситуацию успеха, радость победы, получать удовольствие от интеллектуальной математической деятельности;
- 4) сформировать у школьников умение решать нестандартные задачи на основе метода рефлексивной самоорганизации;
- 5) тренировать мыслительные операции, навыки парной и групповой работы, коммуникативные умения в позициях «автора», «понимающего», «критика», «организатора»;
- 6) создать качественное содержание олимпиадной подготовки по математике, связанное как с содержанием школьного курса математики (за основу взят курс математики «Учусь учиться»), так и с содержанием школьных математических олимпиад разных уровней (вплоть до Всероссийской олимпиады школьников).

Устойчивое мотивационное напряжение учащихся, необходимое для включения в любую коллективную деятельность (в том числе деятельность по решению олимпиадных задач), может проявиться только при условии удовлетворения таких базовых потребностей человека, как потребности в безопасности, причастности (теплых человеческих отношениях) и самоутверждении [3, с. 62]. Для создания среды, отвечающей этим требованиям, используются приведенные выше методологические и дидактические принципы «Олимпиадной математики», а также конкретизирующие их правила.

<u>Содержание ознакомительного этапа</u>

(«Математический театр»)

Содержание курса «Математический театр» также структурировано в 21 тематическую линию согласовано с содержанием непрерывного курса математики «Учусь учиться» для общеобразовательной школы.

I. Арифметика

1. Суммы

Приемы упрощения устного счета (сложение, вычитание): разбиение на пары. Метод дополнения до целого в клетчатых задачах. Использование связи между числовыми и геометрическими задачами для упрощения счета.

Приемы решения задач о разделении чисел на группы с равной суммой. Составление магических квадратов. Изменение суммы при изменении каждого слагаемого на некоторое число. Метод подсчета двумя способами на примере чисел с известными попарными суммами.

Прием разбиения на пары для подсчета сумм чисел, идущих через равные промежутки. Определение четности количества чисел в ряду. Формула суммы чисел от 1 до *п*. Разбиение на пары групп чисел с равной суммой.

Метод подсчета двумя способами в арифметических задачах. Использование подсчета двумя способами в доказательствах «от противного», при решении задач с арифметическими таблицами, геометрических задач. Введение переменной для дальнейшего двойного подсчета.

Среднее арифметическое, его свойства (изменение при увеличении всех чисел набора на некоторое число и в некоторое число раз; оценка среднего арифметического сверху и снизу наибольшим и наименьшим числами набора; неизменность среднего арифметического при добавлении числа, равного среднему арифметическому чисел набора).

2. Числа и их свойства

Способы решения числовых и буквенных ребусов. Организация перебора с учетом принципа узких мест. Приемы решения задач на восстановление знаков действий, расстановку скобок, нахождение чисел с указанными свойствами.

Понятие решения буквенного ребуса. Метод перебора для поиска всех решений ребуса. Ограничение полного перебора с учетом принципа узких мест, свойств четности. Доказательство отсутствия решения у ребуса с помощью метода перебора, числовых оценок.

Конструкции с обыкновенными и десятичными дробями. Представление чисел в виде обыкновенных дробей с числителем 1 и разными знаменателями. Применение арифметических свойств дробей, правила сокращения дробей. Уменьшение чисел на интервале (0; 1) при возведении в степень. Приемы решения задач на равномерное распределение частей между несколькими людьми.

Использование отрицательных чисел в конструкциях как метод устранения мнимых противоречий. Зависимость знака произведения от знаков множителей. Приемы решения задач на оценку и пример, связанные с отрицательными числами. Использование отрицательных чисел в задачах с числовыми оценками.

3. Закономерности

Поиск циклов в арифметических задачах. Анализ задач с повторяющимися числами, вычисление длины цикла. Определение и использование порядкового номера внутри цикла в задачах с «большими» числами.

Эффект «плюс-минус один». Использование схемы для его преодоления. Вывод формулы для определения количества натуральных чисел в промежутке с помощью интерпретации на числовой оси. Метода масштабирования для проверки формул. Использование эффекта «плюс-минус один» для устранения противоречий при решении задач.

Конструкции с предварительным анализом. Конструирование путем разбиения на аналогичные подзадачи в задачах на разрезание, составление числовых конструкций.

Последовательное конструирование (конструирование путем рассмотрения более простых задач и дальнейшего обобщения на исходную задачу). Бесконечные процессы. Понятие базовой конструкции, шага. Прием разбиения процесса на последовательность этапов, на каждом из которых изменяются свойства только одного элемента.

4. Время и движение

Приемы решения арифметических задач о промежутках времени. Учет разницы часовых поясов. Идея о задачах на движение по реке на примере задач про отстающие и спешащие часы. Конструкции в задачах про время.

Задачи на относительное движение (движение навстречу, в противоположных направлениях, вдогонку, с отставанием) с неполными данными. Разбор случаев в задачах на движение.

Использование нестандартных чертежей при решении задач на движение. Изображение скоростей движения в частях (единичных отрезках). Масштабирование скорости. Использование более крупных единиц времени для уравнивания расстояний.

Недельная и годовая цикличность. День недели как остаток от деления на 7. Способы построения конструкций и доказательства невозможности построения конструкций в задачах про календарь.

Движение по кругу. Изображение скоростей движения в условных единицах (дугах). Движение стрелок часов, исследование количества их пересечений. Понятие градусной меры дуги на примере углов между часовой, минутной, секундной стрелками.

II. Геометрия

1. Геометрическое мышление

Повороты клетчатой фигуры на прямой угол, связь с симметрией. Понятие о зеркальных (но несимметричных) фигурах. Использование симметрии и поворотов фигур при решении задач на разрезание. Метод «пропеллера» для построения примеров.

Задачи на разрезание пространственных фигур. Вычисление объемов фигур, составленных из кубиков. Изменение объема фигуры, составленной из кубиков, при увеличении каждого измерения в 2 раза. Составление фигур из объемных частей.

Понятие развертки. Нахождение различных разверток куба. Способы изображения «склеивающихся» граней при изображении развертки куба. Изображение фигур, состоящих из кубиков. Три вида объемной фигуры. Восстановление объемной фигуры по трем ее видам.

Изображение многогранников по заданному количеству вершин, ребер и граней (тетраэдр, пирамида, октаэдр, усеченная пирамида). Развертки многогранников. Оклеивание объемных фигур. Пути на поверхности объемных фигур.

2. Плошади

Разрезание фигур на равные части по линиям сетки и составление фигур из частей. Приемы поиска разных способов разрезания. Метод перебора, использование симметрии при поиске как можно большего количества различных разрезаний одной и той же фигуры на равные части. Фигуры тетрамино, их нахождение с помощью метода перебора. Использование множества делителей числа для вычисления возможного количества частей, на которые можно разрезать фигуру.

Разрезания по линиям сетки и диагоналям клеток. Свойство аддитивности площади. Метод разбиения на элементарные части (прямоугольники, прямоугольные треугольники) и метод дополнения для вычисления площадей фигур, границы которых идут не по линиям сетки. Использование площадей фигур для определения форм частей в случае разрезания клетчатых фигур не по линиям сетки (диагоналям клеток).

Пентамино. Получение фигур пентамино из тетрамино с помощью геометрического метода перебора. Использование симметрии при решении задач на разрезание.

Введение дополнительной сетки (укрупнение или уменьшение клеток, наклонная сетка). Первичные представления о движениях плоскости (параллельный перенос, поворот). Перпендикулярность на клетчатой бумаге.

Приемы решения задач на перекраивание фигур («разрежь и составь»). Равносоставленные фигуры.

Разрезание неклетчатых фигур. Введение вспомогательной сетки. Разрезание фигур на подобные. Использование вспомогательной раскраски при решении задач на разрезание. Задачи на разрезание с оценкой и примером.

3. Геометрические неравенства

Конструкции с отрезками и ломаными. Вычисление периметров фигур. Связь между длинами отрезков на прямой.

Приближенное вычисление длин ломаных и кривых с помощью нити. Подсчет количества кратчайших путей в графе. Задача о нахождении диагонали кирпича. Кратчайшие пути по граням куба, параллелепипеда.

Варианты расположения точек на прямой. Координата середины отрезка числовой прямой. Расстояние между серединами отрезков.

Неравенство треугольника. Доказательство неравенства треугольника с использованием построений. Оценка суммы длин диагоналей четырехугольника через его периметр.

III. Алгебра

1. От чисел к буквам

Метод уравнивания при решении задач с опорой на вспомогательные схемы. Метод «анализ с конца».

Прием «учти лишнее». Метод подсчета двумя способами. Связь с теорией множеств.

Выбор удобной переменной в текстовых задачах. Сравнение метода введения переменных с методом доказательства единственности решения задачи с помощью числовых оценок.

Десятичная запись (представление натурального числа в виде $a+10b+100c+\ldots$). Признаки делимости, связанные с десятичной записью числа. Использование десятичной записи при решении буквенных ребусов и для доказательств «от противного». Сведение задачи к простейшим уравнениям в цифрах с дальнейшим перебором вариантов, использованием свойств делимости.

2. Функциональные зависимости

Использование формул при решении нестандартных текстовых задач. Формулы площади прямоугольника, объема и площади поверхности куба, прямоугольного параллелепипеда.

Доказательство формул перевода единиц измерения площади, объема. Нестандартные единицы измерения.

Понятие взаимно однозначного соответствия между множествами. Разбиение объектов на пары как пример взаимно однозначного соответствия. Использование взаимно однозначного соответствия для сравнения мощностей множеств. Примеры соответствий, не

являющихся взаимно однозначными. Взаимно однозначное соответствие в простых комбинаторных задачах.

Прямая и обратная пропорциональность. Использование пропорций при решении нестандартных текстовых задач.

Свойство суммы и среднего арифметического пропорционально изменяемых чисел.

3. Неравенства и оценки

Сравнение многозначных чисел. Нахождение наибольшего или наименьшего многозначного числа с определенными свойствами. Использование правил сравнения чисел для доказательства минимальности и максимальности.

Метод перебора в арифметических задачах. Перебор по количеству объектов одного из двух типов. Задачи про «ноги и головы». Оценки, основанные на изменении количества объектов одного типа на единицу. Четность как инструмент упрощения перебора и доказательства невозможности.

Оценки величины «сверху» и «снизу». Ограничение перебора с помощью оценок. Двусторонние оценки как метод доказательства единственности ответа. Простейшие действия с неравенствами. Оценки, связанные с делимостью. Решение двойных неравенств с натуральными числами.

Транзитивность неравенств. Использование промежуточного числа (посредника) для доказательства числовых неравенств. Использование нескольких посредников. Уменьшение чисел на интервале (0; 1) при возведении в степень.

IV. Теория чисел

1. Делимость

Вывод признака делимости на 2 с помощью числового луча и зацикливания последней цифры. Изменение последней цифры числа при сложении, вычитании, умножении. Доказательство четности и нечетности суммы и разности двух чисел.

Четность или нечетность суммы нескольких чисел. Доказательство с помощью разбиения на пары. Использование соображений четности при решении задач на доказательство для упрощения перебора вариантов.

Делимость и ее свойства. Доказательство признаков делимости на 2, 4, 8, 5, 25, 10, 3, 9, их обобщение. Отсутствие обобщения признака делимости на 9 на признак делимости на 27.

Разложение натурального числа на простые множители. НОД иНОК. Простые числа. Делимость как инвариант.

Другие признаки делимости, связанные с десятичной записью числа (на 7, 11, 13 и др.).

Задачи на оценку и пример, связанные с признаками делимости: на нахождение минимального числа с указанными свойствами делимости, числа с наименьшей суммой цифр.

Каноническое разложение натурального числа. Степень вхождения простого делителя. Четность степеней вхождения простых множителей в каноническое разложение точного квадрата.

2. Остатки

Признак делимости на 10. Последняя цифра как остаток от деления на 10. Правила изменения последней цифры при арифметических операциях (сложение, вычитание, умножение).

Повторяемость на числовом луче чисел, делящихся на n. Повторяемость чисел, дающих определенный остаток при делении на n.

Способ определения остатка числа, связанный с соответствующим признаком делимости. Делимость на n разности числа и его остатка от деления на n. Сумма цифр. Делимость разности числа и его суммы цифр на 3 и 9. Раскладывание числа на разное количество частей с ланным остатком.

Остатки от деления целых чисел на натуральные. Общий вид числа с определенным остатком при делении на число. Арифметические свойства остатков. Задачи на остатки с доказательством по принципу Дирихле. Зацикливание остатков степеней.

V. Логика

1. Математическая логика

Понятие об истинном и ложном высказывании. Составление высказываний и вопросов с определенными свойствами. Перебор двух вариантов в логических задачах.

Рыцари и лжецы. Отрицания элементарных высказываний. Перебор вариантов по роли (рыцарь/лжец). Представление перебора в виде таблицы, дерева вариантов. Высказывания о логическом следовании.

Логические задачи с неединственным ответом. Перебор, использующий высказывания о существовании и всеобщности. Отрицание высказываний о существовании и всеобщности. Отрицание высказываний с «больше», «меньше», «больше или равно», «меньше или равно».

Метод «от противного». Логические таблицы. Отрицание высказываний с «и», «или», более сложных высказываний. Логические задачи на оценку и пример.

Доказательства, использующие чередование объектов. Расположение объектов по кругу.

2. Принципы решения задач

Представление условия задачи в виде нестандартного чертежа. Геометрические интерпретации логических и арифметических задач.

Малые случаи. Разделение задачи на эквивалентные подзадачи. Составление блоков из элементов разбиения. Задачи с повторяющимися объектами. Метод проверки ответа (закономерности) на малых случаях.

Анализ задачи с конца (обратный ход) в арифметических и логических задачах. Сравнение с методом введения переменной. Табличное представление анализа с конца. Рассмотрение последнего шага процесса, его использование для доказательств в логических задачах.

Задачи с вопросом «сколько нужно взять?». Использование отрицаний элементарных высказываний при решении задач.

Формальное введение принципа Дирихле. Связь с доказательством «от противного». Обобщения принципа Дирихле. Принцип Дирихле в геометрических задачах. Остатки и принцип Дирихле.

3. Алгоритмы и конструкции

Переливания (задачи на отмеривание определенного количества жидкости с помощью двух или более емкостей и источника воды). Табличная форма записи шагов алгоритма. Укрупнение шагов алгоритма при наличии повторяющихся групп действий (идея алгоритмических циклов).

Переправы. Организация перебора в задачах на переправы, удобная форма записи решения. Идея промежуточных обратных действий для работы алгоритма (перевоз объекта обратно).

Составление алгоритмов угадывания с помощью вопросов, на которые можно ответить только «да» или «нет». Доказательство несостоятельности алгоритма, позволяющего при одинаковых начальных данных получить различные ответы.

Взвешивания. Составление алгоритмов определения фальшивых монет с помощью взвешиваний. Прямая и косвенная информация. Понятие о количестве информации. Доказательство невозможности построения алгоритма при недостаточном количестве взвешиваний. Задачи на испытания с другими сюжетами.

4. Игры и стратегии

Понятие математической игры для двух игроков на примере игр с шахматными фигурами на досках. Игры-шутки, в которых победитель зависит только от количества раундов. Формирование представления о выигрышных позициях.

Понятие выигрышной стратегии. Математические игры с полной информацией. Использование дерева перебора для доказательства верного выбора стратегии.

Симметричная стратегия в играх. Доказательство симметричной стратегии. Симметричная стратегия с «центром». Примеры неверного использования симметричной стратегии.

Выигрышные позиции как метод конструирования стратегии.

Игры на опережение. Игры, в которых один игрок может гарантировать себе «ничью».

VI. Комбинаторика и теория множеств

1. Комбинаторика

Использование схем (графов) для удобства подсчета количества связей (дорог, рукопожатий). Доказательства невозможности построения графа с определенным количеством связей. Подсчет общего количества игр в однокруговом турнире. Связь между прямым подсчетом числа связей по схеме и двойным подсчетом через суммарное количество выходящих «связей».

Дерево вариантов для решения комбинаторных задач. Переход от дерева вариантов к правилу произведения (правилу «И»). Подсчет количества чисел с определенными свойствами.

Правило суммы (правило «ИЛИ») и правило произведения (правило «И»), определение ситуаций для использования каждого правила. Задачи, требующие использования комбинации этих правил.

Перестановки без повторений и с повторениями на примере анаграмм слова. Вывод формулы для числа перестановок из правила произведения. Факториал и его свойства. Перестановки с повторениями. Вывод формулы.

2. Теория множеств

Диаграмма Эйлера — Венна для двух, трех и более множеств. Пересечение и объединение множеств, различные методы подсчета количества элементов в пересечении и объединении на готовых диаграммах.

Введение вспомогательной диаграммы для решения задачи. Работа с множествами с неизвестным количеством элементов. Логические задачи на множества, связанные с долями и дробями.

Метод дополнения в задачах. Использование кругов Эйлера и метода дополнения в комбинаторных задачах, в том числе для вычисления количества чисел в диапазоне, делящихся или не делящихся на какие-то числа.

Метод введения переменной при решении задач про множества.

VII. Комбинаторная геометрия

1. Раскраски и разбиения

Раскраски досок. Конструирование примера раскраски доски с указанными свойствами. Задачи-соревнования на раскраску досок в наибольшее и наименьшее количество цветов. «Правильная» раскраска. Раскраска географической карты как пример «правильной» раскраски.

Чередование объектов как частный случай «шахматной» раскраски. Чередование объектов в ряду, по кругу. Относительное количество чередующихся объектов. Четность суммы чисел в промежутке. Связь чередования и разбиения на пары. Разрезания шахматной доски. Идея использования заданной шахматной раскраски в доказательствах.

Шахматная раскраска досок, ее использование для оценок и доказательств. Обобщение шахматной раскраски на другие объекты. Шахматная раскраска ребер и граней куба. Принцип Дирихле в задачах с раскраской. Использование раскраски для нахождения и доказательства единственности примера.

Виды раскрасок клетчатых досок в два и более цвета. Раскраска полосами, диагональная раскраска в несколько цветов, «крупная» шахматная раскраска. Доказательство невозможности разрезания на основе раскраски.

2. Теория графов

Изображение графов. Граф как способ удобного представления связей между объектами. Изоморфизм графов. Различные способы изображения связей. Неориентированные и ориентированные связи.

Исследование возможности нарисовать фигуру одним росчерком. Теорема Эйлера как формальный способ проверить, можно ли нарисовать фигуру одним росчерком. Нечетность степеней вершин как способ выявления концов пути.

Полный граф. Количество ребер в полном графе. Графы шахматных фигур и количество ребер в них. Двудольный граф как модель связей между объектами двух типов. Представление турнира в виде графа.

Формальное определение графа. Вершины, ребра, степени вершин. Лемма о рукопожатиях как способ подсчета количества ребер в графе через сумму степеней вершин. Свойство четности количества вершин нечетной степени в графе. Лемма о хороводах.

3. Комбинаторная геометрия

Взаимное расположение точек и отрезков на плоскости. Точки и отрезки, лежащие на одной прямой. Идея об увеличении количества частей при разрезании невыпуклых фигур.

Разрезание фигур на части с определенным числом сторон. Разрезание на части, не образующие прямоугольники. Задачи на объединение фигур.

Покрытие плоскости одинаковыми фигурами (паркеты). Понятие о многоугольнике. Паркеты в форме правильных многоугольников (треугольники, квадраты, шестиугольники). Замощение клетчатыми фигурами. Замощение многоу гольниками неправильной формы. Замощение невыпуклыми многоугольниками. Задачи о наиболее плотной укладке.

Невыпуклые фигуры как средство преодоления мнимых противоречий. Задачи о пересечении фигур.

Технология «Математический театр»

Технология «Математический театр» — это модификация леятельностного метола (ТДМ) ДЛЯ интеллектуальных способностей школьников холе освоения олимпиадной математики. Одновременно данная технология помогает детям освоить рефлексивный метод преодоления трудностей и стратегии решения нестандартных математических задач, включает творческий эмоциональный компонент через ролевую перевоплощение, командную работу, соревновательность, переживание радости побед.

Каждое отдельное занятие в этой технологии — это постановка нового спектакля, у которого есть свое название (тема занятия), сценаристы (учитель и авторский коллектив проекта), сценарий (задачи, которые предстоит решить), режиссер (учитель). Ученики выступают во всех ролях — они и актеры, и зрители, но при этом сценаристы и режиссеры своих выступлений, в ходе которых они представляют построенные ими решения задач.

«Математический театр» — это своеобразный спектакль-форум, элементами которого являются мини-спектакли детей.

ЭТаП 1. «Математическое фойе»

Обычно в театральном фойе зрители погружаются в атмосферу театра и внутренне готовятся к спектаклю. В Математическом фойе также идет подготовительная работа. При этом учащиеся проходят этапы 1–5 ТДМ.

Занятие начинается с мотивации к учебной деятельности на основе механизма «надо» — «хочу» — «могу». Чтобы заинтересовать учеников, учитель в течение 1–3 минут погружает их в тему занятия с помощью некоторой жизненной ситуации, побуждающей повторить ранее изученный материал, который подготовит их к освоению/открытию нового знания.

Затем учащиеся знакомятся с новыми приемами и способами решения олимпиадных задач. Учитель предлагает **ключевую** задачу — это новая для школьников задача по теме занятия, которая помогает вывести «советы» (содержательный ориентир для решения задач, включенных в занятие).

Ключевая задача решается под руководством учителя, при этом в ходе ее решения может использоваться как подводящий диалог, так и организация самостоятельных открытий детей на основе РСО. Если в ходе решения ключевой задачи возникает затруднение, используется метод ролей: роли мыслителя переводят внутренние мыслительные действия во внешний план и таким образом помогают учащимся найти путь решения.

В завершение дети обобщают свои действия и фиксируют собственные версии «совета» карандашом в учебном пособии (этот шаг важен, так как он пробуждает в учениках желание узнать, как правильно). После озвучивания и согласования версий, дети аккуратно дописывают «совет» ручкой, а затем на основе этого формулируют тему и цель занятия.

ЭТаП 2. «Творческая мастерская»

Представлению спектакля на сцене театра предшествует творческая работа труппы актеров под руководством режиссера. На репетициях актеры осваивают новые роли, приемы и техники, совершенствуют свое мастерство перевоплощения, размышляют, фантазируют.

В Творческой мастерской школьники распределяются в группы по 4—6 человек (актерские труппы), каждой из которых предлагается свой сценарий — олимпиадная задача из данного раздела, соответствующая уровню подготовки группы (такая возможность предусмотрена в учебных пособиях по данному курсу).

В течение 4–5 минут группы пытаются самостоятельно выполнить полученное задание, распределяясь по ролям и опираясь на метод РСО. При этом они могут пользоваться подсказками или обратиться за помощью к учителю. Решение дети фиксируют на черновиках и готовят его представление на сцене «Математического театра». ЭТаП 3. «Сиена»

Каждая группа («актеры») представляет свой мини-спектакль (вариант решения) перед всеми участниками («зрителями»). На сцену может выйти один участник группы («моноспектакль») или несколько (спектакль разыгрывается «по ролям»).

Перед тем как представить решение, актер должен дать зрителям некоторое время на знакомство с задачей: пересказать условие, начертить схему или рисунок, чтобы каждый участник «спектакля» качественно сыграл роль фотографа — «погрузился» в условие задачи, сделал его «своим».

Задача актера (или актеров) — донести до зрителей суть содержания и решения своей задачи. Возможно, он расскажет, какие вопросы себе ставил.

Задача зрителей — просмотреть спектакль, не перебивая актера, вникнуть и понять предлагаемый способ решения.

Если несколько групп решали одну и ту же задачу, то после выступления первой группы участники каждой из остальных групп уточняют решение методом дополнения (не представляя его заново, а при необходимости уточняя какой-то элемент: формулировку условия и вопроса, построенную модель, способ решения и проверки, ответ и т. д.). При этом зрители могут задать актерам в коммуникативной форме вопросы на понимание («Правильно ли я понял(а), что ...?»). Таким образом, учащиеся получают ценный опыт выступлений, презентации

своих идей и их обсуждения в форме коммуникативного взаимодействия.

Представленное решение уточняется (либо, если оно не получено, отыскивается) с помощью подводящего диалога. Возможность ответа предоставляется сначала членам группы (или групп), решавших данную задачу, а если потребуется — всем участникам. Разбираются разные варианты решения, и согласованный способ учитель фиксирует на доске, а дети аккуратно записывают ручкой. Так они постепенно создают для себя «умный решебник», который поможет им при подготовке к математическим соревнованиям разного уровня.

По окончании спектакля звучат аплодисменты как знак признания (в случае успеха выступления) или поддержки (в случае неудачи). А если спектакль восхитил и впечатлил зрителей, то могут звучать даже возгласы «браво!».

ЭТаП 4. «Антракт»

Данный этап является аналогом этапа 6 уроков в ТДМ — первичное закрепление с проговариванием во внешней речи, — который является необходимой ступенью прочного усвоения знаний (П. Я. Гальперин). Учитель просит школьников проговорить вслух в группах приемы решения задач по выбранной теме, которые они открыли и научились применять.

После этого он с помощью подводящего диалога проводит рефлексию решения задач, фиксирует достижения учащихся и то, что можно улучшить. Постепенно, по мере взросления детей проведение рефлексии решения переходит к учащимся, выступающим в роли магистра.

В завершение учитель подводит итог всех выступлений и создает в классе ситуацию успеха, которую также можно поддержать аплодисментами в поддержку позитивных результатов, полученных на занятии.

ЭТаП 5. «Выход на бис»

Все дети получают возможность «выступить на бис» — выбрать себе для тренинга 1–2 тренировочных задания, аналогичных решенным на занятии, а затем проверить себя в разделе «Варианты решений и ответов».

Данный этап соответствует этапу 7 уроков в ТДМ — самостоятельная работа с самопроверкой по эталону, — где новое знание переходит у учащихся во внутренний план, что является необходимым этапом процесса его формирования, усвоения (П. Я. Гальперин).

ЭТаП 6. «Зеркало»

Это этап рефлексии деятельности на занятии. Учитель побуждает детей провести самоанализ своей работы, отвечая на вопросы:

- Какую цель вы сегодня ставили на занятии? Достигли ли вы этой цели?
 - Что нового вы узнали? Чему научились?
 - Какие задачи получились? Какие нет?
 - Какие задачи показались сложными? Какие понравились?
 - Какие роли помогли вам лучше понять решение задач?
- Кто в ходе представления задач был сегодня в роли «автора», «понимающего»? Какая из этих ролей вам больше нравится?
 - Довольны ли своей работой? Как можно ее улучшить?
- Какие личные победы сегодня удалось одержать? Кто хочет о них рассказать?
- С каким настроением вы сегодня решали задачи? Нарисуйте свое отражение в зеркале.
- Определите свое отношение к задачам с помощью согласованных значков («царская», «легкая», «сложная», «красивая» и т. д.).

«За кулисами»

Для детей, которые работают быстрее и, решив все задания на занятии, хотят потренироваться дома, предлагаются дополнительные задания, как правило, более высокого уровня сложности.

Итак, при работе в технологии «Математический театр» учащиеся на системной основе осваивают стратегии, методы и приемы решения олимпиадных задач по математике, учатся не бояться трудностей, преодолевать их на основе метода РСО, работать в команде. Вводимые роли переводят внутренние мыслительные действия по решению любых нестандартных задач на уровень знакомых детям жизненных образов, помогают им грамотно работать с текстами, наполняют процесс решения олимпиадных математических задач соревновательностью и позитивными эмоциями.

Технология «Математический театр» может использоваться не только в коллективной, но и в индивидуальной работе с детьми. В этом случае взрослый играет роли режиссера, члена группы по поиску решения задач (актерской труппы) и роль зрителя.

Планируемые результаты освоения курса внеурочной деятельности

Подготовительный этап («Задача дня»). 1–2 классы

1 класс

К концу обучения в первом классе обучающийся научится:

I. Арифметика

1. Суммы

- восстанавливать пропущенные числа и знаки в примерах на сложение и вычитание (до 4 знаков, 5 чисел);
- выполнять творческие задания по составлению примеров на сложение и вычитание с пропусками чисел и знаков;
- использовать приемы упрощения устного счета при сложении и вычитании чисел: арифметические законы и прием дополнения числа до круглого;
- применять зависимость изменения результатов сложения и вычитания от изменения компонентов для упрощения вычислений;
- использовать числовой луч в качестве инструмента при решении арифметических задач повышенной сложности.

2. Числа и их свойства

- решать примеры на сложение и вычитание, составленные с помощью спичек;
- находить несоответствия в равенствах, составленных из спичек, и устранять их;
- использовать римские цифры, выполнять сравнение, сложение и вычитание с ними;
- распознавать алфавитную нумерацию, «волшебные» цифры;
- решать и составлять простые арифметические ребусы на сложение и вычитание однозначных и двузначных чисел.

3. Закономерности

- устанавливать, продолжать закономерности в расположении геометрических фигур и чисел;
- восстанавливать пропущенные элементы в последовательностях с геометрическими фигурами и числами;
- устанавливать и продолжать закономерности на сложение и вычитание чисел в пределах 100.

4. Время и движение

- устанавливать последовательность событий;
- обозначать время совершения действия (вчера, сегодня, завтра, утром, днем, вечером, ночью, весной, сейчас, позже, погодя, всегда), устанавливать их соответствие и взаимосвязь для решения логических задач;
- использовать знание величин и единиц измерения длины, площади, массы, объема (вместимости), времени при решении нестандартных задач.

II. Геометрия

1. Геометрическое мышление

- распознавать плоские и пространственные фигуры, анализировать их свойства;
- выполнять преобразования моделей геометрических фигур по заданной инструкции (форма, размер, цвет);
- выделять группы предметов или фигур, обладающих общим свойством.

2. Плошали

- определять количество клеток в фигуре, рисовать фигуры другой формы, но с таким же количеством клеток;
- использовать прием наложения фигур для определения равенства фигур;
- составлять фигуры из определенного набора частей, разных/одинаковых по форме;
- делить (разрезать) простые фигуры на две и более части.

3. Геометрические неравенства

• конструировать геометрические фигуры из палочек; • вычислять периметр фигур и длины ломаных.

III. Алгебра

1. От чисел к буквам

- составлять числовые и буквенные выражения по рисункам;
- использовать буквенную запись для фиксации свойств чисел и фигур;
- составлять и решать простые уравнения по их образной интерпретации с помощью весов и геометрических фигур.

2. Функциональные зависимости

- устанавливать и изменять свойства предметов (цвет, форму, размер);
- анализировать таблицы для определения свойств фигур и предметов; использовать таблицу для классификации фигур и предметов;

• определять зависимости между величинами, компонентами арифметических действий и использовать их для решения задач.

3. Неравенства и оценки

- решать логические задачи с использованием числового луча на основе сравнения предметов (старше, моложе, самый высокий, самый узкий и т. д.);
- решать нестандартные задачи на разностное сравнение; решать логические задачи на части и целое.

IV. Теория чисел

1. Делимость

- выполнять практические действия по распределению фигур и предметов в группы с равным количеством;
- наблюдать возможность практической расстановки парами, тройками и т. д. (или раскладке в вазы, на полки и т. д. поровну) без остатка.

2. Остатки

• наблюдать возникновение остатка при практической расстановке парами, тройками и т. д. (или при раскладке в вазы, на полки и т. д. поровну).

V. Логика

1. Математическая логика

- делать простые выводы и умозаключения, используя слова «верно» и «неверно»;
- обосновывать свои суждения, опираясь на уже известные правила и свойства;
- решать логические задачи-ловушки (задачи на устранение мнимых логических противоречий, внимательность), обосновывать свои решения;
- решать логические задачи, используя метод исключения («четвертый лишний»);
- использовать модели для решения логических задач (числовой луч, таблица).

2. Принципы решения задач

- строить цепочки логических рассуждений;
- соотносить полученный результат с условием задачи, оценивать его правдоподобие;
- осуществлять простой перебор вариантов.

3. Алгоритмы и конструкции

• составлять, оставлять и использовать простые алгоритмы для определения последовательности действий при решении арифметических и логических задач.

4. Игры и стратегии

- понимать правила простых математических игр;
- действовать по правилам игры, придерживаться составленного плана (стратегии).

VI. Комбинаторика и теория множеств

1. Комбинаторика

- осуществлять перебор всех вариантов перестановки двух, трех объектов (предметов, фигур, цифр, букв);
- использовать идею организованного перебора (группировка вариантов).

2. Теория множеств

- выделять группы предметов или фигур, обладающих общим свойством, составлять группы предметов по заданному свойству (признаку), выделять части группы;
- соединять группы предметов в одно целое (сложение), удалять части группы предметов (вычитание);
- проводить аналогию сравнения, сложения и вычитания групп предметов со сравнением, сложением и вычитанием величин;
- применять переместительное свойство сложения групп предметов;
- изображать группы с помощью овалов;
- сравнивать группы предметов по количеству;
- задавать группы предметов с помощью перечисления элементов.

VII. Комбинаторная геометрия

1. Раскраски и разбиения

2. Теория графов

- выполнять раскраску фигур по заданным условиям.
- выполнять задания на сопоставление предметов двух групп по определенному признаку.

3. Комбинаторная геометрия

- выполнять задания на поиск фигур заданной формы;
- конструировать фигуры (треугольник, четырехугольник и т. д.) из палочек.

Обучающийся получит возможность научиться при решении олимпиадных задач самостоятельно:

- анализировать текст задачи, внетекстовую информацию;
- выбирать модели к нестандартным задачам на основе известных (числовой луч, таблица, выражение);
- строить логические цепочки рассуждений, обосновывать свой ответ;

• применять известный теоретический материал для обоснования хода решения;

использовать практические интерпретации для решения задач (геометрического содержания, на перебор вариантов, про разбиение объектов на равные группы); • сопоставлять ответ с условием залачи.

2 класс

К концу обучения во втором классе обучающийся научится:

I. Арифметика

1.Ссуммы

- восстанавливать пропущенные числа и знаки в примерах на сложение, вычитание, умножение и деление;
- использовать при решении нестандартных задач приемы упрощения устного счета при сложении и вычитании чисел в пределах 1000: арифметические законы и прием дополнения числа до круглого;
- использовать свойства сложения и вычитания для решения нестандартных арифметических задач;
- применять прием разбиения чисел на пары;
- использовать числовой луч в качестве инструмента при решении арифметических задач повышенной сложности;
- заполнять «магические» квадраты.

2. Числа и их свойства

- решать и составлять простые арифметические ребусы на сложение и вычитание двузначных чисел, умножение в пределах таблицы умножения;
- использовать известные свойства чисел в задачах на расстановку скобок и знаков арифметических действий (сложение, вычитание, умножение).

3. Закономерности

- устанавливать, продолжать закономерности в расположении геометрических фигур;
- восстанавливать пропущенные элементы в последовательностях с геометрическими фигурами и числами;
- устанавливать и продолжать закономерности на сложение и вычитание чисел в пределах 1000;
- выявлять закономерности в таблице умножения.

4. Время и движение

- устанавливать последовательность событий;
- обозначать время совершения действия (вчера, сегодня, завтра, утром, днем, вечером, ночью, весной, сейчас, позже, погодя,

- всегда), устанавливать их соответствие и взаимосвязь для решения логических задач;
- выполнять простые действия с единицами времени (сложение, вычитание);
- организовывать перебор вариантов при решении задач про время.

II. Геометрия

1. Геометрическое мышление

- самостоятельно выявлять и анализировать свойства плоских и объемных фигур;
- использовать знание свойств фигур при решении нестандартных залач:
- выполнять преобразования моделей геометрических фигур по заданной инструкции (форма, размер, цвет).

2. Плошали

- использовать прием наложения фигур для определения равенства фигур;
- составлять фигуры из определенного набора частей, разных/одинаковых по форме;
- делить (разрезать) простые фигуры на две и более части;
- проводить предварительный анализ для разрезания фигуры на равные части (подсчет количества клеток в частях, перебор возможных вариантов формы фигуры, состоящих из найденного количества клеток);
- осуществлять разрезание фигур на равные части с дополнительными условиями (например, чтобы каждая часть содержала поровну отмеченных клеток).

3. Геометрические неравенства

- конструировать геометрические фигуры из палочек;
- вычислять периметр фигур и длины ломаных;
- сравнивать длины путей по прямой и ломаной линии;
- использовать поиск равных участков путей для сравнения их длин.

III. Алгебра

1. От чисел к буквам

- составлять буквенные выражения по тексту задач и графическим моделям и, наоборот, составлять текстовые задачи к заданным буквенным выражениям;
- строить схемы, на которых единичный отрезок (часть) используется в качестве переменной.

2. Функциональные зависимости

- составлять числовые и буквенные выражения по рисункам на сложение, вычитание, умножение и деление;
- устанавливать и изменять свойства предметов (цвет, форму, размер);
- анализировать таблицы для определения свойств фигур и предметов;
 использовать таблицу для классификации фигур и предметов;
- определять зависимости между величинами, компонентами арифметических действий и использовать их для решения задач.

3. Неравенства и оценки

- решать логические задачи с использованием числового луча на основе сравнения предметов (старше, моложе, самый высокий, самый узкий и т. д.);
- решать нестандартные задачи на разностное и кратное сравнение;
- решать логические задачи на части и целое.

IV. Теория чисел

1. Делимость

- выполнять практические действия по распределению фигур и предметов в группы с равным количеством;
- решать задачи на установление отношения «делится», «не делится»;
- использовать понятие о четных и нечетных числах, свойство чередования четных и нечетных чисел на числовом луче для решения нестандартных задач.

2. Остатки

• выполнять деление с остатком на основе графических моделей и вычислительного алгоритма.

V. Логика

1. Математическая логика

- делать простые выводы и умозаключения, используя слова «верно» и «неверно»;
- обосновывать свои суждения, опираясь на уже известные правила и свойства;
- решать задачи методом последовательного исключения вариантов, фиксировать шаги рассуждения в таблице;
- решать логические задачи-ловушки (задачи на устранение мнимых логических противоречий, внимательность), обосновывать свои решения;
- использовать модели для решения логических задач (числовой луч, таблица, схема).

2. Принципы решения задач

- использовать упорядочивание чисел (расположение по возрастанию/убыванию) при решении нестандартных задач;
- замечать «узкие места» в числовом ряду и использовать для построения конструкций;
- использовать систематический перебор при решении задач.

3. Алгоритмы и конструкции

- определять порядок действий, использовать обратные действия при решении задач;
- составлять и использовать простые алгоритмы для определения последовательности действий при решении арифметических и логических задач. 4. Игры и стратегии
- понимать правила простых математических игр;
- действовать по правилам игры, придерживаться составленного плана (стратегии).

VI. Комбинаторика и теория множеств

1. Комбинаторика

- подсчитывать количество вариантов перестановки двух и трех объектов (предметов, фигур, цифр, букв);
- выполнять перестановки с ограничениями;
- использовать идею организованного перебора (группировка вариантов, связь с уже известными задачами);
- использовать возможности для систематического перебора вариантов.

2. Теория множеств

- выделять группы предметов или фигур, обладающих общим свойством, составлять группы предметов по заданному свойству (признаку), выделять части группы;
- соединять группы предметов в одно целое (сложение), удалять части группы предметов (вычитание);
- проводить аналогию сравнения, сложения и вычитания групп предметов со сравнением, сложением и вычитанием величин;
- применять переместительное свойство сложения групп предметов;
- изображать группы с помощью овалов;
- сравнивать группы предметов по количеству;
- задавать группы предметов с помощью перечисления элементов.

VII. Комбинаторная геометрия

1. Раскраски и разбиения

- выполнять задания на раскраску по данным условиям;
- применять перебор вариантов при решении задач на раскраску.

2. Теория графов

- изображать граф знакомств;
- вычислять количество связей по схемам рациональным способом.

3. Комбинаторная геометрия

- выполнять задания на поиск фигур заданной формы;
- добиваться нужного количества геометрических фигур, изменяя положение палочек или увеличивая (уменьшая) их число.

Обучающийся получит возможность научиться при решении олимпиалных задач самостоятельно:

- анализировать текст задачи, внетекстовую информацию;
- выбирать модели к нестандартным задачам на основе известных (числовой луч, таблица, выражение, дерево вариантов);
- строить логические цепочки рассуждений, обосновывать свой ответ;
- применять известный теоретический материал для обоснования хода решения;
- использовать практические интерпретации для решения задач (геометрического содержания, на перебор вариантов, про разбиение объектов на равные группы);
- сопоставлять ответ (пример) с условием задачи.

3 - 4 класс

К концу обучения в третьем классе обучающийся научится:

І. Арифметика

1. Суммы

- применять приемы рациональных вычислений: метод приведения к круглому числу, метод группировки (на примере группировки парами «сложи первое с последним»);
- использовать метод группировки в задачах с геометрическим содержанием;
- использовать метод дополнения до целого в клетчатых задачах;
- находить и использовать связи между числовыми и геометрическими задачами для упрощения счета.

2. Числа и их свойства

- применять алгоритмы сложения, вычитания и умножения чисел в столбик при решении числовых ребусов;
- использовать принцип «узких мест» для упрощения перебора в арифметических задачах на примере числовых ребусов;
- решать задачи на восстановление знаков действий, расстановку скобок;
- решать задачи на нахождение чисел с указанными свойствами.

3. Закономерности

- анализировать задачи с повторяющимися числами;
- находить циклы в арифметических задачах;
- вычислять длину цикла, количество циклов и остаток, а также применять эти понятия при решении задач;

 определять и использовать порядковый номер элемента цикла в задачах с «большими» числами.

4. Время и движение

- учитывать разницу часовых поясов при решении задач на движение;
- решать задачи про отстающие и спешащие часы.

II. Геометрия

1. Геометрическое мышление

- выполнять повороты клетчатой фигуры на прямой угол;
- различать «зеркальные» фигуры;
- применять симметрию и повороты фигур при решении задач на разрезание.

2. Площади

- находить различные способы разрезания одной фигуры на равные части, основываясь на соображениях симметрии;
- применять метод перебора при решении геометрических задач на примере задач на разрезание и составление фигур из частей;
- изображать полный комплект фигур тетрамино и использовать эти фигуры при решении задач;
- использовать множество делителей числа для вычисления возможного количества частей, на которые можно разрезать фигуру.

3. Геометрические неравенства

- строить конструкции с отрезками и ломаными, используя метод «проб и ошибок»;
- решать задачи, связанные с соотношениями длин отрезков на прямой.

III. Алгебра

1. От чисел к буквам

- применять метод уравнивания для решения текстовых задач;
- строить вспомогательные схемы к нестандартным задачам, связанным с разностным и кратным сравнением величин; выбирать удобный единичный отрезок (часть) при построении схем к таким задачам.

2. Функциональные зависимости

 использовать формулы при решении нестандартных текстовых задач: площади прямоугольника, объема и площади поверхности куба, прямоугольного параллелепипеда; решать задачи на раскраску поверхности объемных фигур.

3. Неравенства и оценки

- использовать правила сравнения многозначных чисел при решении задач;
- решать простейшие задачи на нахождение наибольшего или наименьшего многозначного числа с определенными свойствами;

 применять правила сравнения чисел для доказательства минимальности и максимальности найленного числа.

IV. Теория числе

1. Делимость

- выводить признак делимости на 2 с помощью числового луча и зацикливания последней цифры;
- анализировать изменение последней цифры числа при сложении, вычитании, умножении;
- доказывать свойства четности суммы и разности двух чисел и использовать их при решении задач.

2. Остатки

- использовать признак делимости на 10 при решении задач;
- определять остаток от деления числа на 10 по его последней цифре числа;
- использовать правила изменения последней цифры при арифметических операциях (сложение, вычитание, умножение) при решении задач.

V. Логика

1. Математическая логика

- использовать понятия истинного и ложного высказывания при решении логических задач;
- составлять вопросы, позволяющие различить некоторые ситуации по ответам «да» и «нет»;
- определять два необходимых варианта для перебора и выполнять перебор этих вариантов в логических задачах.

• 2. Принципы решения задач

- использовать геометрические интерпретации при решении логических и арифметических задач;
- представлять условия задачи в виде нестандартного чертежа;
- использовать чертеж для решения задач с эффектом «плюс-минус олин».

3. Алгоритмы и конструкции

- составлять алгоритм отмеривания определенного количества жидкости с помощью двух или более емкостей и источника жидкости;
- использовать табличную форму записи шагов алгоритма переливаний;
- укрупнять шаги алгоритма при наличии повторяющихся групп действий;
- применять идею анализа «с конца» при решении задач на переливание.

4. Игры и стратегии

• определять победителя в играх-шутках для двух игроков с фиксированным количеством ходов с помощью подечета общего количества ходов;

• использовать простой анализ выигрышных позиций при выборе хода в математической игре для двух игроков.

VI. Комбинаторика и теория множеств

1. Комбинаторика

- использовать схемы (графы) для удобства подсчета количества связей (дорог, рукопожатий);
- применять метод подсчета двумя способами при подсчете количества связей (количества игр в однокруговом турнире, количества ребер в двудольном графе);
- доказывать невозможность построения графа с определенным количеством связей, основываясь на свойствах четности и делимости чисел.

2. Теория множеств

- строить схемы на основе диаграммы Эйлера Венна к задачам о множествах с данным количеством элементов;
- вычислять по схемам количество элементов в пересечении и объединении множеств по данным количествам элементов в множествах разными способами.

VII. Комбинаторная геометрия

1. раскраски и разбиения

- конструировать примеры раскрасок досок с определенными свойствами, основываясь на методе «проб и ошибок» и известных шаблонах раскраски (шахматная раскраска, диагональная раскраска в несколько цветов); доказывать с помощью принципа «узких мест» невозможность раскраски доски в меньшее (большее) количество цветов, чем найденное;
- использовать метод «проб и ошибок» и принцип «узких мест» при конструировании примеров в задачах на раскраску досок и расстановку фигур в клетках.

2. Теория графов

- использовать схему со связями (граф) для демонстрации односторонних и двусторонних связей между объектами;
- анализировать и использовать свойства графов при решении задач (число вершин, степени вершин);
- находить «одинаковые» (изоморфные) графы и изображать граф, равный (изоморфный) данному без самопересечений ребер.

3. Комбинаторная геометрия

- исследовать взаимное расположение точек и отрезков на плоскости;
- использовать изображение точек и отрезков, лежащих на одной прямой, для решения задач;

• строить простые конструкции с выпуклыми и невыпуклыми фигурами.

Обучающийся получит возможность научиться при решении олимпиадных задач самостоятельно:

- анализировать текст задачи, внетекстовую информацию;
- находить взаимосвязи между условиями задачи и использовать их для построения модели и хода решения;
- строить модели на основе уже известных (числовой луч, схема, таблица, диаграмма Эйлера Венна, граф);
- находить «узкие места» задачи и использовать их при конструировании примеров;
- использовать метод «проб и ошибок»;
- применять метод перебора в задачах с геометрическим содержанием;
- строить логические рассуждения в устной форме;
- формулировать гипотезы на основе наблюдения и доказывать их;
- преодолевать кажущиеся противоречия, связанные с недостаточным анализом условия задачи;
- проверять ответ (пример) на соответствие всем условиям задачи;
- делать краткую (схематичную) запись решения задачи.

Тематическое планирование

1 класс

1час в неделю, всего 30 ч

No	Тема занятия	Кол-во	Основные олимпиадные идеи
		часов	
1.	Свойства предметов	1	Анализ свойств предметов, сравнение
			предметов
2.	Геометрические фигуры	1	Свойства плоских и пространственных
			геометрических фигур, перемещения на
			плоскости
3.	Сложение и вычитание групп	1	Логические задачи про «мешки»
	предметов		(мультимножества)
4.	Перестановки	1	Опыт перебора всех вариантов
			расположения двух и трех объектов
5.	Игра – соревнование № 1	1	Задачи по темам 1 - 4
	(подведение итогов по темам 1 –		
	4)		
6.	Поиск закономерностей	1	Задачи на поиск закономерностей
7.	Числовой отрезок	1	Сравнение, сложение и вычитание чисел на
			числовом отрезке

8.	Ломанная линия.	1	Конструирование из палочек
	Многоугольник		
9.	Игра – соревнование № 2	1	Задачи по темам 6-8
	(подведение итогов по темам 6-		
	8)		
10.	Составление выражений	1	Задачи на составление числовых
	-		выражений
11.	Компоненты сложения и	1	Задачи на взаимосвязь компонентов
	вычитания		действий сложения\вычитания
12.	Части фигур.	1	Задачи на разрезание и составления фигур
13.	Равные фигуры	1	Задачи на поиск равных фигур
14.	Игра – соревнование № 3	1	Задачи по темам 10-13
	(подведение итогов по темам 10-		
	13)		
15.	Волшебные цифры	1	От чисел к буквам. Равенства со спичками
16.	Задача и ее элементы	1	Логические задачи на части и целое.
			Обратное действие
17.	Разностное сравнение	1	Логические задание на разностное
	<u>-</u>		сравнение. Обратное действие
18.	Перебор вариантов	1	Систематический перебор вариантов
19.	Игра – соревнование № 4	1	Задачи по темам 15-18

	(подведение итогов по темам 15-18)		
20.	Измерение величин	1	Логические задачи на изменение длины, массы, объема (вместимости)
21.	Свойства величин	1	Логические задачи на свойства величин
22.	Уравнения	1	Решение простых уравнений на сложение и вычитание
23.	Поиск закономерностей	1	Задачи на поиск закономерностей
24.	Игра – соревнование № 5	1	Задачи по темам 20-23
	(подведение итогов по темам 20-23)		
25.	Составление задачи	1	Задачи на выбор и применение известных алгоритмов
26.	Логические рассуждения	1	Задачи, требующие организации логических рассуждений
27.	Танграм	1	Составление фигур из частей танграма
28.	Таблицы	1	Задачи на поиск закономерностей в таблицах
29.	Задачи –ловушки	1	Задачи с некорректными и неполными формулировками

30.	Подведение итогов года	1	Представление «любимых» задач по всем
			темам

2 класс 1 ч в неделю, всего 34 ч

	1 1 b negerno, beer o 5 1 1				
№	Тема занятий	Кол-во	Основные олимпиадные идеи		
		часов			
1.	Цепочки	1	Взаимосвязи в упорядоченных группах		
2.	Перестановки	1	Перестановки из 2-3 элементов		
3.	Задачи с палочками	1	Конструирование в арифметических и		
			геометрических задачах		
4.	Быстрый счет	1	Приемы устных вычислений		
5.	Игра – соревнование № 1	1	Задачи по темам 1-4		
	(подведение итогов по темам 1-				
	4)				
6.	Исчезнувшие записи	1	Восстановление цифр, скобок и знаков		
			действий + и -		
7.	Кто «лишний»?	1	Логические рассуждения, классификация		
8.	Порядок	1	Упорядочивание		
9.	Красота математики	1	Связь математически закономерностей		
	_		окружающим миром		

10.	Игра-соревнование № 2 (подведение итогов по темам 6-9)	1	Задачи по темам 6-9
11.	Алгоритмы	1	Конструирование алгоритмов, задачи на обратные действия
12.	Периметр многоугольника	1	Вычисление периметра многоугольников
13.	Порядок действий	1	Алгоритмы решения задач и периметров
14.	Свойства сложения и вычитания	1	Приемы рациональных вычислений и упрощения выражений
15.	Игра – соревнование № 3 (подведение итогов по темам 11- 14)	1	Задачи по темам 11-14
16.	Плоские и объемные фигуры	1	Выявление свойств и преобразование плоских и объемных геометрических фигур
17.	Логика перебора	1	Систематический перебор вариантов
18.	Таблицы	1	Закономерности в таблице
19.	Секреты числового луча	1	Модели умножения и деления на числовом луче
20.	Компоненты умножения и деления	1	Связи между компонентами умножения и деления

21.	Игра – соревнование № 4 (подведение итогов по темам 17-20)	1	Задачи по темам 16-20
22.	Задачи ловушки	1	Задачи на устранение мнимых противоречий
23.	Уравнения	1	Решение простых уравнений на умножение и деление на основе модели прямоугольника
24.	Логически задачи	1	Решение логических задач на основе схем и таблиц
25.	Задачи на сравнение: «НА» и «В»	1	Разностное и кратное сравнение числе и величин
26.	Точки и линии на плоскости	1	Задачи на взаимное расположение и построение линий на плоскости
27.	Игра-соревнование № 5 (подведение итогов по темам 22-26)	1	Задачи по темам 22-26
28.	Числовые закономерности и ребусы	1	Поиск числовых закономерностей и разгадка ребусов
29.	Выражения	1	Составление числовых и буквенных выражений к задачам

30.	Деление с остатком	1	Деление с остатком и делимость
31.	Величины и их измерение	1	Преобразование величин
32.	Нарисуй и посчитай	1	Изображение связей на схемах и
			рациональные подсчеты
33.	Игра-соревнование № 6 (подведение итогов по темам 28-33)	1	Задачи по темам 28-32
34.	Подведение итогов года	1	Представление «любимых» задач по всем
			темам

3 класс 1 ч в неделю, всего 34 ч

	1 1 b negemo, been 0 3 1 1				
No	Тема занятия	Кол-во	Основные олимпиадные идеи		
		часов			
1.	Как хорошо уметь считать!	1	Метод группировки парами. Метод		
			группировки в задач с геометрическим		
			содержанием		
2.	Разрезания фигур	1	Способы решения задач на разрезание		
			фигуры на равные части. Представления о		
			переборе вариантов. Представления о		

			симметрии и повороте фигур
3.	Круглые задачи	1	Приемы поиска циклов в числовых
			закономерностях. Использование длины
			цикла для подсчетов
4.	Мастера математики	1	Повторение тем занятий 1-3
5.	Элементарно!	1	Методы нахождения количества элементов
			пересечения и объединения множеств с
			помощью диаграммы Эйлера - Венна
6.	Точки и кусочки	1	Геометрические свойства взаимного
			расположения прямых, отрезков и точек на
			плоскости. Метод «проб и ошибок» при
			решении геометрических задач
7.	Путешествие с числами	1	Понятие суммы цифры числа и его
			применение в задачах. Способ решения
			задач на нахождение
			наибольшего/наименьшего числа (с
			помощью вычеркивания цифр). Метод
			перебора вариантов
8.	Смотри!	1	Прием использования чертежей для
			решения нестандартных арифметических
			задач. Связь числа разрезов и числа частей

			при делении отрезка и окружности
9.	Мини- домино	1	Повторение тем занятий 4-7
10.	Переливания	1	Алгоритм. Табличная запись алгоритма (на
	_		примере задач на отмеривание жидкости с
			помощью двух и более емкостей).
			Укрупнение шагов алгоритма
			(алгоритмические циклы). Метод перебора
			вариантов.
11.	Маршруты	1	Представление о графе как средстве отображения
			объектов и связей между ними. Метод «проб и оппибок»
12	Hyananya maƙayayy	1	ошиоок» Принцип «узких мест» для упрощения перебора на
12.	Числовые ребусы	1	примере число- вых ребусов
13.	Биржа задач	1	Повторение тем занятий 8–10
14.	Уравнение	1	Использование вспомогательной схемы с
	1		единичным отрезком. Метод «анализ с конца»
15.	Четность	1	Четность суммы и разности двух чисел.
			Признак делимости на 2. Первичный опыт
			использования и повтора при решении
			задач на разрезание
16.	Кручу – верчу	1	Представления об осевой симметрии.
			Поворот фигуры на прямой угол.

			Использование симметрии и поворота при решении задач на разрезание
17.	Лови момент!	1	Способы работы с отрезками времени.
			Первичный опыт решения задач на
			движение по реке (по течению и против) на
			примере задач про время
18.	Математическое казино	1	Повторение тем занятий 11-14
19.	Правда или ложь?	1	Основы математикой логики высказываний.
			Метод перебора при решении логических
			задач
20.	Игры на досках	1	Представления о выигрышных стратегиях в
			математических играх для двух игроков.
			Метод «проб и ошибок» при решении
			геометрических задач
21.	Последняя цифра	1	Измерение последней цифры числа при
			арифметических действиях. Признак
			делимости на 10 и его использование в
			задачах.
22.	Раскраски досок	1	Метод «проб и ошибок» и принцип «узких
			мест» в геометрических задачах.
			«Шахматная» раскраска досок других форм

			и размеров, чем обычная шахматная.
			Представления об оптимальном решении
23.	Математическая абака	1	Повторение тем занятий 15-18
24.	Рукопожатия	1	Представление об изображении
			информации в виде графа. Подсчет двумя
			способами
25.	Числовые лесенки	1	Метод перебора вариантов. Разбиение
			задачи на подзадачи
26.	Прямые и ломанные	1	Свойство длин отрезков на прямой. Метод
			подсчета двумя способами в
			геометрических задачах. Представления об
			ослаблении условий при решении задач.
			Метод «проб и ошибок» в геометрических
			задачах.
27.	Сделай сам	1	Повторение занятий 19-21
28.	Подведение итогов	1	Представление «любимых» задач по всем
			темам
29.	Резерв	1	Повторение
30.	Резерв	1	Повторение
31.	Резерв	1	Повторение

32.	Резерв	1	Повторение
33.	Резерв	1	Повторение
34.	Резерв	1	Повторение

4 класс

No	Тема занятия	Кол-во	Целевые приоритеты воспитания
		часов	
1.	Математический квадрат. Числа	1	Формировать у учащихся такие качества
	с равной суммой		как: культура поведения, эстетический
2.	Задачи на перелирование	1	вкус, уважение личности. Создание условий
3.	Логика. Рыцари и лжецы	1	для развития у учащихся творческих способностей.
4.	Неравенства и метод перебора	1	
5.	Игра «Числовые головоломки»	1	
6.	Буквенные ребусы	1	
7.	Календарь	1	
8.	Эффект «плюс-минус один»	1	
9.	Площадь на клетчатой бумаге	1	
10.	Игровые задачи.	1	
	Математические кроссворды		
11.	Масштабирование и проверка на	1	

	малых случаях	
12.	Принципы решения задач	1
	«Сколько нужно взять»	
13.	Действия с множествами	1
14.	Разрезания не по линиям сетки	1
15.	Игровые задачи.	1
	Математические фокусы.	
16.	Четность суммы чисел	1
17.	Разрезания шахматной доски	1
18.	Геометрические	1
	неравенства. «По прямой –	
	кратчайший путь!»	
19.	От чисел к буквам. «Учти	1
	лишнее»	
20.	Игровые задачи.	1
	Математические загадки и	
	шутки.	
21.	Остатки. Периодичность чисел,	1
	делящихся на <i>п</i>	
22.	Теория графов. Теорема	1

	Эйлера. <i>«Нарисовать одним</i>	
	росчерком»	
23.	Понятие стратегии. Дерево	1
	перебора	
24.	Относительное движение	1
25.	Длина, площадь, объем	1
26.	Числовые ребусы	1
27.	Игра. «Числовые головоломки».	1
28.	Комбинаторика. Дерево	1
	вариантов	
29.	Логика. Повторение	1
30.	Решение олимпиадных задач.	1
31.	«Круглые» задачи	1
32.	Разрезания в пространстве	1
33.	В царстве смекалки. Решение	1
	нестандартных задач.	
34.	Итоговое занятие.	1
	Математический КВН.	